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Abstract According to a procedure previously introduced from Y. Ilamed and N. Salin-
garos, we start giving proof of two existing Clifford algebras, the Si that has isomorphism
with that one of Pauli matrices and the Ni,±1 where Ni stands for the dihedral Clifford alge-
bra. The salient feature is that we show that the Ni,±1 may be obtained from the Si algebra
when we attribute a numerical value (+1 or −1) to one of the basic elements (e1, e2, e3)

of the Si. We utilize such result to advance a criterium under which the Si algebra has as
counterpart the description of quantum systems that in standard quantum mechanics are con-
sidered in absence of observation and quantum measurement while the Ni,±1 attend when a
quantum measurement is performed on such system with advent of wave function collapse.
The physical content of the criterium is that the quantum measurement with wave function
collapse induces the passage in the considered quantum system from the Si to Ni,+1 or to
the Ni,−1 algebras, where each algebra has of course its proper rules of commutation. After
a proper discussion on the difference between decoherence and wave function collapse, we
re-examine the von Neumann postulate on quantum measurement, and we give a proper jus-
tification of such postulate by using the Si algebra. Soon after we study some applications
of the above mentioned criterium to some cases of interest in standard quantum mechanics,
analyzing in particular a two state quantum system, the case of time dependent interaction of
such system with a measuring apparatus and finally the case of a quantum system plus mea-
suring apparatus developed at the order n = 4 of the considered Clifford algebras and of the
corresponding density matrix in standard quantum mechanics. In each of such cases exam-
ined, we find that the passage from the algebra Si to Ni,±1, considered during the quantum
measurement of the system, actually describes the collapse of the wave function. Therefore
we conclude that the actual quantum measurement has as counterpart in the Clifford alge-
braic description, the passage from the Si to the Ni,±1 Clifford algebras, reaching in this
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manner the objective to reformulate von Neumann postulate on quantum measurement and
proposing a self-consistent formulation of quantum theory.

Keywords Quantum mechanics · Quantum measurement · Collapse of wave function ·
Clifford algebra

1 Introduction

Quantum mechanics has had a so great success to leave very little reasons to doubt its intrin-
sic validity. It has never been found in disagreement with experimental data, and in explain-
ing a very large variety of physical processes and in predicting basic results also in other
fields. Nevertheless, we cannot ignore that some questions concerning fundamental features
of this theory remained unsolved, and some historic debates among scientists deeply influ-
enced the early development of the theory. These basic issues were and often continue to be
prevalently discussed mainly in philosophical contexts [1–3]. They will not receive here our
direct consideration. In our opinion the object of direct investigation is to understand where
the foundations of the theory lie, and why so many deep questions are still unanswered.

The first important question concerns the problem of the wave-function collapse by mea-
surement. Its solution would be of relevant significance because it would provide us with a
self-consistent formulation of the quantum-mechanical formalism. This result might be of
importance also to foresee the way to be followed in order to understand and to explain also
the other basic issues that remained often understandable in the story of this theory. As we
know, they gave origin to a profound debate. On this basis the completeness of quantum
mechanics as a physical theory was discussed, and the very validity of quantum mechanics
was often questioned.

The aim of the present paper is to reformulate the basic von Neumann’s postulate on
quantum measurement on the basis of two theorems that we proof in the framework of the
Clifford algebra. The results that we obtain seem to be of some relevance for the problem of
wave function collapse since, based on two algebraic theorems, we are supported from the
asepsis language of an algebraic framework and thus without resource to philosophical or to
epistemological indications.

2 Some Features About the Collapse of the Wave Function

In quantum mechanics we have the well known phenomenon of quantum interference.
We consider a quantum-mechanical particle to be a “physical entity” represented by a

quantum wave function ψ(x, t), which depends on the space coordinate x and the time
variable t of this particle. Consider the well known interference experiment of the Young
type, in which a beam of particles hits a target with two open slits. Also the theoretical
description of this experiment is well known. It holds about two basic postulates:

(a) The total outgoing wave function ψ(x, t) behind the slits is written as

ψ = ψ1 + ψ2 (1)

where ψ1 and ψ2 are the two waves originating from slits 1 and 2, respectively. This is
the so-called superposition principle.
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(b) The intensity of the wave function ψ is proportional to |ψ |2. We understand the above
experimental facts by means of a purely probabilistic interpretation of the wave function.
It is assumed that

P = |ψ(x, t)|2 (2)

is proportional to the probability of finding a particle at a space-point x at time t , when
it is in a state represented by ψ .

The intensity observed at the screen is proportional to

P = |ψ |2 = |ψ1|2 + |ψ2|2 + 2Re(ψ∗
1 ψ2) = P1 + P2 + 2Re(ψ∗

1 ψ2) (3)

where there is the presence of the characteristic interference term 2Re(ψ∗
1 ψ2) which is re-

sponsible for the observed interference pattern.
Suppose we find a particle at point X on the screen. On the basis of the probabilistic

interpretation, we can state that the particle state immediately after the observation must be
represented by a wave function ψX(t), distributed only around X so that we conclude that
the measurement has caused the change

ψ → ψX (4)

of the wave function.
We call this change the wave-function collapse by measurement. The wave-function col-

lapse is not a causal wave motion, continuously shrinking from ψ to ψX or to ψX′ , but it is
an acausal and purely probabilistic event. Quantum mechanics only gives the probabilistic
prediction that the probability of finding each event is proportional to |ψX|2 or to |ψX′ |2. Of
course, the wave-function collapse cannot be described by the Schrödinger equation which
gives only deterministic changes. Consequently, quantum mechanics becomes a non self-
contained theory since the measuring process cannot be described by quantum mechanics
itself.

These are only some preliminary features regarding the more articulated problem of mea-
surement in quantum mechanics. For a complete examination of the actual problems that are
involved, we refer to the several reviews that may be found in literature [4, 5]. In particular,
we intend to hint here only at some recent developments as the theory of quantum decoher-
ence, a term that was used for the first time by Bohr, while an articulated elaboration was
introduced more recently by Zurek [6–8]. It considers the mechanism by which quantum
systems interact with their environments giving the appearance of wave function collapse.
Still we mention here the theory of Ghirardi, Rimini and Webber (GRW) [9–11] who claim
that particles undergo spontaneous wave-function collapses. The leading idea of the theory
is to eradicate observers from the picture and view state reduction as a process that occurs as
a consequence of the basic laws of nature. The theory achieves this by adding to the funda-
mental equation of quantum mechanics, the Schrödinger equation, a stochastic term which
describes the state reduction occurring in the system.

After such preliminary remarks, we may now set the basis for our discussion. As pre-
viously stated, we consider the measurement of a given observable F on a quantum-
mechanical system S in a normalized superposed state

ψ =
∑

i

ciϕi, ci = (ϕi,ψ),
∑

i

|ci |2 = 1 (5)
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where ϕi is a normalized eigenstate of F , relative to an eigenvalue λi , so that Fϕi = λiϕi

and (ϕi, ϕj ) = δij .
The probabilistic interpretation means that the probability of finding the eigenvalue λi

(i.e. the corresponding eigenstate ϕi) in the measurement of F on a state ψ is equal to |ci |2.
The wave-function collapse is expressed in this case as

ψ → ϕi (6)

The previous equation still does not describe the wave-function collapse by measurement,
intended as an acausal and purely probabilistic event. A complete expression for the wave-
function collapse must be formulated in terms of density matrix as it was initiated by von
Neumann [12]

ρS = |ψ〉〈ψ | =
∑

i

∑

j

cic
∗
j |ϕi〉〈ϕj | → ρS,F =

∑

k

|ck|2|ϕk〉〈ϕk| (7)

The above expression describes rather well a process in which all the phase correlations
among different eigenstates are erased. We obtain a sum of exclusive probabilities of finding
each eigenstate.

However, also such formulation may still give origin to contradictions. In order to avoid
such possible difficulties, we have to modify the previous expression for the wavefunction
collapse, by introducing the states of a given measurement apparatus system A obtaining in
this case

ρ = ρS ⊗ ρA =
∑

i

∑

j

cic
∗
j |ϕi〉〈ϕj | ⊗ ρA → ρS,A,t =

∑

k

|ck|2|ϕk〉〈ϕk|t ⊗ ρA(k),t (8)

Let us see in more detail the von Neumann’s postulate about quantum measurement.
If a quantum system is in an eigenstate of the operator corresponding to the observable

being measured, the outcome of the measurement will be the eigenvalue associated with that
eigenstate. However, if the system is in a superposition of such eigenstates, the outcome will
be unpredictable, and all that quantum theory can give, are the probabilities for the different
outcomes. If the system is not destroyed by the measurement, and if the interaction fits into
the so called ‘measurement of the first kind’, then the quantum state after the measurement
will be the eigenstate associated to the measurement outcome, or more generally (to in-
clude degenerancies), the normalized projection of the original state onto the eigensubspace
associated with the outcome. This rule is known as the projection postulate. It originated
with Dirac and von Neumann, and was later formalized in degenerate cases by Luders and
Ludwig [13, 14].

According to such projection postulate the complete phase-damping way for a two state
system may be written

D(ρ) = |0〉〈0|ρ|0〉〈0| + |1〉〈1|ρ|1〉〈1| (9)

where the effect of this mapping is to zero-out the off-diagonal entries of a density matrix:

D

(
α β

γ δ

)
=

(
α 0
0 δ

)
(10)

If we have a set of mutually orthogonal projection operators (P1,P2, . . . ,Pm) which com-
plete to identity, i.e., PiPj = δijPj and

∑
i Pi = 1 when a measurement is carried out on a

system with state |ψ〉 then
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(1) The result i is obtained with probability pi = 〈ψ |Pi |ψ〉.
(2) The state collapses to

1√
pi

Pi |ψ〉

In detail, note that von Neumann’s projection postulate only relates the vanishing of inter-
ference terms or decoherence. It does not explain the collapse of a pure state to another
pure state associated to individual object systems. The formal distinction between decoher-
ence and collapse is substantial as authors as Sussmann [15] in 1957 and Bell [16] more
recently outlined. They distinguished clearly between what we call ‘division’ (decoherence)
and ‘reading’ (the collapse which follows decoherence). Decoherence is a statistical concept,
involving the transition from a pure state to a ‘mixture’, and the disappearance of interfer-
ence terms. Collapse refers to an individual system, and it describes a transition from a pure
state to another pure state.

For a single quantum object, we may therefore write:

∣∣∣∣
∑

i

aiϕi

〉
→ ϕk (11)

with probability

|ak|2
For an ensemble of measurements of the same observable performed on the same initial

pure state (that is, each measurement being performed on a different single object, all pre-
pared in the same pure state), one may represent the statistical transition described by the
projection postulate as

P
∑

i

aiϕi →
∑

k

|ak|2P (ϕk) (12)

In brief, an explanation for collapse implies an explanation for decoherence, but an expla-
nation for decoherence doesn’t imply an explanation for collapse [17].

3 Two Theorems in Clifford Algebra

Let us start with a proper definition of the 3-D space Clifford (geometric) algebra Cl3.
It is an associative algebra generated by three vectors e1, e2, and e3 that satisfy the ortho-

normality relation

ej ek + ekej = 2δjk (13)

for j, k, λ ∈ [1,2,3]
That is,

e2
λ = 1 and ej ek = −ekej for j 
= k

Let a and b be two vectors spanned by the three unit spatial vectors Cl3,0. By the ortho-
normality relation the product of these two vectors is given by the well known identity:
ab = a ·b + i(a ×b) when i = e1e2e3 is a Clifford algebraic representation of the imaginary
unity that commutes with vectors.
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To give proofs, let us follow the approach that, starting with 1981, was developed by
Ilamed and Salingaros [18].

Let us consider the three abstract basic elements, ei , with i = 1,2,3, and let us admit the
following two postulates:

(a) it exists the scalar square for each basic element:

e1e1 = k1, e2e2 = k2, e3e3 = k3 with ki ∈ � (14)

In particular we have also the unit element, e0, such that

e0e0 = 1

(b) The basic elements ei are anticommuting elements, that is to say:

e1e2 = −e2e1, e2e3 = −e3e2, e3e1 = −e1e3 (15)

It is

eie0 = e0ei = ei

Theorem 1 Assuming the two postulates given in (a) and (b) with ki = 1, the following
commutation relations hold for such algebra:

e1e2 = −e2e1 = ie3, e2e3 = −e3e2 = ie1, e3e1 = −e1e3 = ie2,

i = e1e2e3

(
e2

1 = e2
2 = e2

3 = 1
)

(16)

They characterize the Clifford Si algebra. We will call it the algebra A(Si).

Proof Consider the general multiplication of the three basic elements e1, e2, e3, using scalar
coefficients ωk,λk, γk pertaining to some field:

e1e2 = ω1e1 + ω2e2 + ω3e3, e2e3 = λ1e1 + λ2e2 + λ3e3,
(17)

e3e1 = γ1e1 + γ2e2 + γ3e3

Let us introduce left and right alternation: for any (i, j), associativity exists eieiej = (eiei)ej

and eiej ej = ei(ej ej ) that is to say

e1e1e2 = (e1e1)e2, e1e2e2 = e1(e2e2), e2e2e3 = (e2e2)e3, e2e3e3 = e2(e3e3),

(18)
e3e3e1 = (e3e3)e1, e3e1e1 = e3(e1e1)

Using (15) in (18) it is obtained that

k1e2 = ω1k1 + ω2e1e2 + ω3e1e3; k2e1 = ω1e1e2 + ω2k2 + ω3e3e2;
k2e3 = λ1e2e1 + λ2k2 + λ3e2e3; k3e2 = λ1e1e3 + λ2e2e3 + λ3k3; (19)

k3e1 = γ1e3e1 + γ2e3e2 + γ3k3; k1e3 = γ1k1 + γ2e2e1 + γ3e3e1
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From (19), using the assumption (b), we obtain that

ω1

k2
e1e2 + ω2 − ω3

k2
e2e3 = γ1

k3
e3e1 − γ2

k3
e2e3 + γ3;

ω1 + ω2

k1
e1e2 − ω3

k1
e3e1 = −λ1

k3
e3e1 + λ2

k3
e2e3 + λ3; (20)

γ1 − γ2

k1
e1e2 + γ3

k1
e3e1 = −λ1

k2
e1e2 + λ2 + λ3

k2
e2e3

By the principle of identity, we have that it must be

ω1 = ω2 = λ2 = λ3 = γ1 = γ3 = 0 (21)

and

−λ1k1 + γ2k2 = 0; γ2k2 − ω3k3 = 0; λ1k1 − ω3k3 = 0 (22)

Equation (22) is an homogeneous algebraic system admitting non-trivial solutions since its
determinant � = 0, and the following set of solutions is given:

k1 = −γ2ω3, k2 = −λ1ω3, k3 = −λ1γ2 (23)

Admitting k1 = k2 = k3 = +1, it is obtained that

ω3 = λ1 = γ2 = i (24)

In this manner, using (14) and (15), as a theorem, the existence of such algebra is proven.
The basic features of this algebra are given in the following manner

e2
1 = e2

2 = e2
3 = 1; e1e2 = −e2e1 = ie3; e2e3 = −e3e2 = ie1;

(25)
e3e1 = −e1e3 = ie2; i = e1e2e3

The content of Theorem 1 is thus established: given three abstract basic elements as de-
fined in (a) and (b) (ki = 1), an algebraic structure is established with four generators
(e0, e1, e2, e3). �

Let us go on now to give proof of Theorem 2.
Before let us note that the algebra A(Si), now given, admits idempotents.
Let us consider two of such idempotents:

ψ1 = 1 + e3

2
and ψ2 = 1 − e3

2
(26)

It is easy to verify that ψ2
1 = ψ1 and ψ2

2 = ψ2.
Let us examine now the following algebraic relations:

e3ψ1 = ψ1e3 = ψ1 (27)

e3ψ2 = ψ2e3 = −ψ2 (28)

Similar relations hold in the case of e1 or e2. From a conceptual point of view, looking at (27)
and (28) we reach only a conclusion. With reference to the idempotentψ1, the algebra A(Si)
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(see (27)), attributes to e3 the numerical value of +1 while, with reference to the idempotent
ψ2, the algebra A(Si) attributes to e3 (see (28)), the numerical value of −1.

However, assuming the attribution e3 → +1, from (25) we have that new commutation
relations should hold in a new Clifford algebra given in the following manner:

e2
1 = e2

2 = 1, i2 = −1; e1e2 = i, e2e1 = −i, e2i = −e1,
(29)

ie2 = e1, e1i = e2, ie1 = −e2

with three new basic elements (e1, e2, i) instead of (e1, e2, e3).
In other terms, in the case in which we attribute to e3 the numerical value +1, a new

algebraic structure should arise with new generators whose rules should be given in (29)
instead of in (25). Therefore, the arising central problem is that we should be able to proof
the real existence of such new algebraic structure with rules given in (29). We repeat: in the
case of the starting algebraic structure, the algebra A(Si), we showed by Theorem 1 that it
exists in the following manner

e2
1 = e2

2 = e2
3 = 1; e1e2 = −e2e1 = ie3; e2e3 = −e3e2 = ie1;

(30)
e3e1 = −e1e3 = ie2; i = e1e2e3

In the present case in which we attribute to e3 the numerical value +1, we should show that
it exists a new algebra given in the following manner

e2
1 = e2

2 = 1; i2 = −1;
(31)

e1e2 = i, e2e1 = −i, e2i = −e1, ie2 = e1, e1i = e2, ie1 = −e2

So we arrive to give proof of Theorem 2.

Theorem 2 Assuming the postulates given in (a) and (b) with k1 = 1, k2 = 1, k3 = −1, the
following commutation rules hold for such new algebra:

e2
1 = e2

2 = 1; i2 = −1;
(32)

e1e2 = i, e2e1 = −i, e2i = −e1, ie2 = e1, e1i = e2, ie1 = −e2

They characterize the Clifford Ni algebra. We will call it the algebra Ni,+1.

Proof To give proof, rewrite (17) in our case, and performing step by step the same calcu-
lations of the previous proof, we arrive to the solutions of the corresponding homogeneous
algebraic system that in this new case are given in the following manner:

k1 = −γ2ω3; k2 = −λ1ω3; k3 = −λ1γ2 (33)

where this time it must be k1 = k2 = +1 and k3 = −1. It results

λ1 = −1; γ2 = −1; ω3 = +1 (34)

and the proof is given.
The content of Theorem 2 is thus established. When we attribute to e3 the numerical

value +1 we pass from the Clifford algebra Si (algebra A) to a new Clifford algebra Ni,+1
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whose algebraic structure is no more given from (30) of the algebra A but from the following
new basic rules:

e2
1 = e2

2 = 1; i2 = −1;
(35)

e1e2 = i, e2e1 = −i, e2i = −e1, ie2 = e1, e1i = e2, ie1 = −e2

that are totally different from the basic commutation rules that we have in the case of the
algebra A(Si).

Theorem 2 also holds in the case in which we attribute to e3 the numerical value of −1.
Assuming the postulates given in (a) and (b) with k1 = 1, k2 = 1, k3 = −1, the following

commutation rules hold for such new algebra

e2
1 = e2

2 = 1; i2 = −1;
(36)

e1e2 = −i, e2e1 = i, e2i = e1, ie2 = −e1, e1i = −e2, ie1 = e2

They characterize the Clifford Ni algebra. We will call it the algebra Ni,−1.
To give proof, consider the solutions of (33) that are given in this new case by

λ1 = +1; γ2 = +1; ω3 = −1 (37)

and the proof is given.
The content of Theorem 2 is thus established. When we attribute to e3 the numerical

value −1, we pass from the Clifford algebra Si (algebra A) to a new Clifford algebra Ni,−1

whose algebraic structure is not given from (30) of the algebra A and not even from (35) but
from the following new basic rules:

e2
1 = e2

2 = 1; i2 = −1;
(38)

e1e2 = −i, e2e1 = i, e2i = e1, ie2 = −e1, e1i = −e2, ie1 = e2

In a similar way, proofs may be obtained when we consider the cases attributing numerical
values (±1) to e1 or to e2.

Of course, the Clifford algebra, N1,±1, given in (35) and in (36) are well known. They
are the dihedral Clifford algebra Ni (for details, see Ref. [18, p. 2093 Table II]).

In conclusion, in this section, using a Clifford algebraic framework, we have shown two
basic theorems, Theorems 1 and 2. As any mathematical theorem they have maximum rigor,
and an aseptic mathematical content that cannot be questioned. The basic statement that
we reach by the proof of such two theorems is that in Clifford algebraic framework, we
have the Clifford algebra A(Si) and inter-related Clifford algebras Ni,±1. When we consider
(e1, e2, e3) as the three abstract elements with rules given in (30), we are in the Clifford
algebra A(Si). When we attribute to e3 the numerical value +1, we pass from the algebra A

(the Clifford algebra Si, with basic features given in (30)), to the algebra B , the Clifford
Ni,+1, with basic algebraic rules given in (31). Instead, when we pass from the Clifford
algebra A (the Clifford algebra Si) to the Clifford algebra Ni,−1, the basic features are given
in (38) and we attribute to e3 the numerical value −1.

The same conceptual facts hold when we reason for Clifford basic elements e1 or to e2,
attributing in this case a possible numerical value (±1) or to e1 or to e2, respectively. �
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4 A Possible Implication for Quantum Mechanics

If one looks at the algebraic rules and commutation relations given in (30), the algebra A(Si)
shown by Theorem 1, immediately acknowledges that they are universally valid in quantum
mechanics. We called the algebra A as the Si Clifford algebra because it links the Pauli
matrices that are sovereign in quantum mechanics. Still the isomorphism between Pauli
matrices and Clifford algebras is well established at any order.

Passing from the algebra A(Si) to Ni,±1 it happens an interesting feature. Consider the
case, as example, of e3. While in A(Si) e3 is an abstract algebraic element that has the
potentiality to assume or the value +1 or the value −1 (in correspondence, in quantum
mechanics it is an operator with possible eigenvalues ±1), when we pass in the algebra
Ni,±1, e3 is no more an abstract element in this algebra, it becomes a parameter to which we
may attribute the numerical value +1, and we have Ni,+1 whose three abstract element now
are (e1, e2, i) with commutation rules given in (35). If we attribute to e3 the numerical value
−1, we are in Ni,−1 whose three abstract elements are still (e1, e2, i), and the commutation
rules are given in (38). Reading this statement in the language and in the logic of quantum
mechanical measurement, it means that if we are measuring the given quantum system S

with a measuring apparatus and, as result of the actualized and performed measurement,
we read the result +1, we are in the corresponding algebraic case, in the algebra Ni,+1.
If instead, performing the measurement, we read the result −1, in this case we are in the
algebra Ni,−1. In each of the two cases this means that a collapse of the wave function has
happened.

During a process of quantum measurement, speaking in terms of Clifford algebraic
framework, we could have the passage from the Clifford algebra A(Si), having such fun-
damental basic commutation rules:

e1e2 = −e2e1 = ie3; e2e3 = −e3e2 = ie1; e3e1 = −e1e3 = ie2; i = e1e2e3;
(39)

e2
1 = e2

2 = e2
3 = 1

to the new Ni,+1 Clifford algebra having the following and totally new commutation rules:

e1e2 = i, e2e1 = −i, e2i = −e1, ie2 = e1, e1i = e2, ie1 = −e2;
(40)

e2
1 = e2

2 = 1; i2 = −1

in the case in which the result of the measurement of e3 is +1 (read on the instrument), and
instead we could have the passage to the new Ni,−1 Clifford algebra, having the following
and totally new commutation rules:

e1e2 = −i, e2e1 = i, e2i = e1, ie2 = −e1, e1i = −e2, ie1 = e2;
(41)

e2
1 = e2

2 = 1; i2 = −1

in the case in which the result of the quantum measurement of e3 gives value −1 (read on
the instrument).

In such way it seems that a reformulation of von Neumann’s projection postulate may
be suggested. The reformulation is that, during a quantum measurement (wave-function
collapse), we have the passage from the Clifford algebra A(Si), to the new Clifford algebra
Ni,±1.
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In other terms
Quantum Measurement (wave-function collapse) = passage from algebra A(Si) to B

(Ni,±1).
In conclusion we think that the two previously shown theorems in Clifford algebraic

framework give justification of the von Neumann’s projection postulate and they seem to
suggest, in addition, that we may use the passage from the algebra A(Si) to Ni,±1 to describe
actually performed quantum measurements.

5 Applications of the Previous Criterium to Some Cases of Quantum Mechanical
Interest

Let us start discussing a trivial application. It is important only to illustrate better the sense
in which we must intend the present formulation.

Assume a two-level microscopic quantum system S with two states u+, u− corresponding
to energy eigenvalues ε+, ε−. The Hamiltonian operator HS can be written

HS = 1

2
ε+(1 + e3) + 1

2
ε−(1 − e3) = 1

2
(ε+ + ε−) + 1

2
(ε+ − ε−)e3 (42)

The standard quantum methodological approach is also well known. We have that

u+ =
(

1
0

)
, u− =

(
0
1

)
, and HSui = εiui (43)

We may also choose ε+ = ε and ε− = 0 simplifying (42) to

HS = 1

2
(1 + e3)ε (44)

Indicate an arbitrary state of such quantum microsystem as

ψS = c+u+ + c−u− (45)

where, according to Born’s rule, we have

c+ = √
p+eiδ1 , c− = √

p−eiδ2 (46)

with

pj (j = +,−) (47)

corresponding probabilities with p+ + p− = 1.
This is the standard quantum mechanical formulation of the system.
Let us admit now that we want to measure the energy of S using a proper apparatus. The

rules of quantum mechanics tell us that we will obtain the value ε with probability p+, and
the value zero with probability p−. After the measurement the state of S will be either u+
or u− according to the measured value of the energy. The experiment will enable us also to
estimate p+ as well as p−.

In such simple quantum mechanical example we have, as known, (42), e3, (44) that are
linear Hermitean operators with quantum states acting on the proper Hilbert space.

Let us see instead the question from a different point of view.
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The e3, and HS given in (42) or in (44) are members of the Clifford algebra. They are
Clifford algebraic members of what we have called the algebra A( Si), with basic rules given
in the following manner:

e2
1 = e2

2 = e2
3 = 1; e1e2 = −e2e1 = ie3; e2e3 = −e3e2 = ie1;

(48)
e2e3 = −e3e2 = ie1; i = e1e2e3

However, on the basis of Theorems 1 and 2 shown in the previous sections, starting with the
Clifford algebra A(Si), we must use the existing Clifford, dihedral algebra B , Ni,±1 when we
arrive to attribute (by a measurement) as example to e3 in one case the numerical value +1
and, in the other case, the numerical value −1.

In the first case we have a dihedral Clifford Ni algebra that is given in the following
manner:

e2
1 = e2

2 = 1, i2 = −1,

e1e2 = i, e2e1 = −i, e2i = −e1, e2i = −e1, ie2 = e1, (49)

e1i = e2, ie1 = −e2

that holds when we are attributing to e3 the numerical value +1 (in analogy with quantum
mechanics: the quantum measurement process has given as result +1). In the second case,
we have instead that

e2
1 = e2

2 = 1; i2 = −1;
(50)

e1e2 = −i, e2e1 = i, e2i = e1, ie2 = −e1, e1i = −e2, ie1 = e2

that holds when we have arrived to attribute to e3 the numerical value −1 by a direct mea-
surement.

Reasoning in terms of a Clifford algebraic framework, we are authorized to apply the
passage from algebra A(Si) to algebra B in (42). From it, we obtain:

HS(Clifford-element) = ε+ (51)

if the instrument has given as result of the measurement, the value +1 to e3 (Clifford alge-
braic parameter of dihedral Ni,+1 algebra), and

HS(Clifford-element) = ε− (52)

if the instrument has given as result of the measurement, the value −1 to e3. During the
measurement we have had the passage from algebra A(Si) to the dihedral Ni,±1 algebra in
which, with given probabilities, e3 has assumed or the +1 or the value −1, respectively.

In the first case, we have

HS(Clifford-element) = ε

and in the second case, we have

HS(Clifford-element) = 0

Consider now the second application.
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Let us introduce a two state quantum system S with connected quantum observable
σ3(e3). We have

|ψ〉 = c1|ϕ1〉 + c2|ϕ2〉, ϕ1 =
(

1
0

)
, ϕ2 =

(
0
1

)
(53)

and

|c1|2 + |c2|2 = 1

As we know, the density matrix of such system is easily written

ρ = a + be1 + ce2 + de3 (54)

with

a = |c1|2 + |c2|2
2

, b = c∗
1c2 + c1c

∗
2

2
, c = i(c1c

∗
2 − c∗

1c2)

2
, d = |c1|2 − |c2|2

2
(55)

where in matrix notation, e1, e2, and e3 are the well known Pauli matrices

e1 =
(

0 1
1 0

)
, e2 =

(
0 −i

i 0

)
, e3 =

(
1 0
0 −1

)
(56)

Of course, the analogy still holds. Equation (54) is still an element of the Clifford al-
gebra, and precisely of Clifford algebra A(Si). As Clifford algebraic member, (54) sat-
isfies the requirement to be ρ2 = ρ and Tr(ρ) = 1 under the conditions a = 1/2 and
a2 − b2 − c2 − d2 = 0 as shown in detail elsewhere in Ref. [19]. In the algebraic frame-
work previously outlined, let us admit that we attribute to e3 the value +1 (that is to say
〈. . .〉 the quantum observable σ3 assumes the value +1 during quantum measurement) or
to e3 the numerical value −1 (that is to say 〈. . .〉 the quantum observable σ3 assumes the
value −1 during the quantum measurement). As previously shown, in such two cases the
algebra A(Si) no more holds, and it will be replaced from the Clifford Ni,±1. To examine
the consequences, starting with the algebraic element (54), write it in the two equivalent
algebraic forms that are obviously still in the algebra A(Si).

ρ = 1

2
(|c1|2 + |c2|2) + 1

2
(c1c

∗
2)(e1 + e2i) + 1

2
(c∗

1c2)(e1 − ie2) + 1

2
(|c1|2 − |c2|2)e3 (57)

and

ρ = 1

2
(|c1|2 + |c2|2) + 1

2
(c1c

∗
2)(e1 + ie2) + 1

2
(c∗

1c2)(e1 − e2i) + 1

2
(|c1|2 − |c2|2)e3 (58)

Both such expressions contain the following interference terms.

1

2
(c1c

∗
2)(e1 + e2i) + 1

2
(c∗

1c2)(e1 − ie2) (59)

and

1

2
(c1c

∗
2)(e1 + ie2) + 1

2
(c∗

1c2)(e1 − e2i) (60)

Let us consider now that the quantum measurement gives as result +1 for e3. In this case
there are (57) and (59) that we take in consideration. On the basis of our principle, we know
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that the previous Clifford algebra A(Si) no more holds, but instead it is valid the N1,+1 that
has the following new commutation rules:

e1e2 = i, e2e1 = −i, e2i = −e1, ie2 = e1, e1i = e2, ie1 = −e2 (61)

Inserting such new commutation rules in (57) and (59), remembering that here e3 is now a
parameter that has value +1, one sees that the interference terms are erased and the density
matrix, given in (57), now becomes

ρ → ρM = |c1|2 (62)

The collapse has happened.
In the same manner let us consider instead that the quantum measurement gives as result

−1 for e3. In this case there are (58) and (60) that we take in consideration. On the basis of
our principle, we know that the previous Clifford algebra A(Si) no more holds, but instead
it is valid the N1,−1 that has the following new commutation rules

e1e2 = −i, e2e1 = i, e2i = e1, ie2 = −e1, e1i = −e2, ie1 = e2 (63)

Inserting such new commutation rules in (58) and (60), remembering that the parameter
e3 now assumes value −1, one sees that the interference terms are erased and the density
matrix, given in (54) or in (58), now becomes

ρ → ρM = |c2|2 (64)

The collapse has happened.
Let us examine now von Neumann results.
In order to formulate in detail von Neumann’s projection postulate, consider the spinor

basis given in (53). Outer products give projection operators that are the idempotents in the
A(si) Clifford algebra as explicitly given in (26). Consider again (9).

Reasoning in terms of Clifford algebra

|0〉〈0| (65)

and

|1〉〈1| (66)

are respectively the idempotents

1 + e3

2
(67)

and

1 − e3

2
(68)

Considering the first term on the right in (9) one has that

(
1 + e3

2

)
ρ

(
1 + e3

2

)
(69)
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that, in terms of the matrix given in (10), gives

(
1 + e3

2

)
ρ

(
1 + e3

2

)
= α

(
1 + e3

2

)
(70)

and explicitly
(

α 0
0 0

)
(71)

Applying the same procedure in the case of

1 − e3

2
(72)

(the second term in (9)), one obtains as result

δ

(
1 − e3

2

)
(73)

and explicitly
(

0 0
0 δ

)
(74)

The sum, as indicated in (9), gives
(

α 0
0 δ

)
(75)

In conclusion we have given full justification of von Neumann’s projection postulate in Clif-
ford A(Si) algebra. As expected, there is total equivalence between von Neumann postulate
and corresponding A(Si) formulation. It is important to reaffirm here that it has been ob-
tained using only the framework of A(Si) algebra. In accord with von Neumann we obtain

α

(
1 + e3

2

)
(76)

and

δ

(
1 − e3

2

)
(77)

Note now that, in application of our criterium, quantum measurement is obtained passing
from algebra A(Si) to Ni,±1. In this case we no more obtain (76) and (77) as it happens
remaining in the framework of the A(Si) algebra, but we obtain respectively (62) or (64),
that is to say,

ρM = |c1|2 (78)

or

ρM = |c2|2 (79)

as it must be when the collapse has happened.
The nature of such result obviously does not change if we explore a time dependent

situation.
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The reader is advised that we will use a lightly modified formalism that however does
not alter the significance of our application.

Consider the quantum system S and indicate by ψ0 the state at the initial time 0. The
state at any time t will be given by

ψ(t) = U(t)ψ0 and ψ0 = ψ(t = 0) (80)

An Hamiltonian H must be constructed such that the evolution operator U(t), that must
be unitary, gives U(t) = e−iH t . It is well known that, given a finite N -level quantum sys-
tem described by the state ψ , its evolution is regulated according to the time dependent
Schrödinger equation

i�
dψ(t)

dt
= H(t)ψ(t) with ψ(0) = ψ0. (81)

Let us introduce a model for the hamiltonian H(t). Details of this formalism may be found
in Refs. [20] and [21]. We express by H0 the hamiltonian of the system S, and we add to
H0 an external time varying hamiltonian, H1(t), representing the perturbation to which the
system S is subjected by action of the measuring apparatus. In conclusion we write the total
hamiltonian as

H(t) = H0 + H1(t) (82)

so that the time evolution will be given by the following Schrödinger equation

i�
dψ(t)

dt
= [H0 + H1(t)]ψ(t) (83)

and ψ(0) = ψ0. We have that

ψ(t) = U(t)ψ0 (84)

where U(t) pertains to the special group SU(N). We will write that

i�
dU(t)

dt
= H(t)U(t) = [H0 + H1(t)]U(t) and U(0) = I (85)

Let A1,A2, . . . ,An (n = N2 − 1), are skew-hermitean matrices forming a basis of Lie al-
gebra SU(N). In this manner one arrives to write the explicit expression of the hamiltonian
H(t). It is given in the following manner

−iH(t) = −i[H0 + H1(t)] =
n∑

j=1

ajAj +
n∑

j=1

bjAj (86)

where aj and bj = bj (t) are respectively the constant components of the free hamiltonian
and the time-varying control parameters characterizing the action of the measuring appara-
tus. If we introduce T , the time ordering parameter (for details see Refs. [20] and [21]), we
arrive also to express U(t) that will be given in the following manner

U(t) = T exp

(
−i

∫ t

0
H(τ)dτ

)
= T exp

(
−i

∫ t

0
(aj + bj (τ ))Aj dτ

)
(87)
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that is the well known Magnus expansion. Locally U(t) may be expressed by exponential
terms as it follows

U(t) = exp(γ1A1 + γ2A2 + · · · + γnAn) (88)

on the basis of the Wein-Norman formula

�(γ1, γ2, . . . , γn)

⎛

⎜⎜⎝

γ̇1

γ̇2

. . .

γ̇n

⎞

⎟⎟⎠ =

⎛

⎜⎜⎝

a1 + b1

a2 + b2

. . .

an + bn

⎞

⎟⎟⎠ (89)

with � n× n matrix, analytic in the variables γi . We have γi(0) = 0 and �(0) = I , and thus
it is invertible. We obtain

⎛

⎜⎜⎝

γ̇1

γ̇2

. . .

γ̇n

⎞

⎟⎟⎠ = �−1

⎛

⎜⎜⎝

a1 + b1

a2 + b2

. . .

an + bn

⎞

⎟⎟⎠ (90)

Consider a simple case based on the superposition of only two states. We have

ψ = [y1, y2]T and |y1|2 + |y2|2 = 1 (91)

As previously said, we have here an SU(2) unitary transformation, selecting the skew sym-
metric basis for SU(2). We will have that

e1 =
(

0 1
1 0

)
, e2 =

(
0 −i

i 0

)
, e3 =

(
1 0
0 −1

)
(92)

Now we consider the following matrices

Aj = i

2
ej , j = 1,2,3

The reader may now ascertain that the previously developed formalism is moving in direct
correspondence with our Clifford algebra A(Si).

We are now in the condition to express H(t) and U(t) in our case of interest. The most
simple situation we may examine is that one of fixed and constant control parameters bj .
The hamiltonian H will become fully linear time invariant and its exponential solution will
take the following form

e
t(

∑3
j=1(aj +bj )Aj ) = cos

(
k

2
t

)
I + 2

k
sen

(
k

2
t

)(
3∑

j=1

(aj + bj )Aj

)
(93)

with k = √
(a1 + b1)2 + (a2 + b2)2 + (a3 + b3)2. In matrix form it will result

U(t) =
(

cos k
2 t + i

k
sen k

2 t (a3 + b3)
1
k

sen k
2 t[a2 + b2 + i(a1 + b1)]

1
k

sen k
2 t[−a2 − b2 + i(a1 + b1)] cos k

2 t − i
k
sen k

2 t (a3 + b3)

)
(94)

and, obviously, it will result to be unimodular as required.
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Starting with this matrix representation of time evolution operator U(t), we may deduce
promptly the dynamic time evolution of quantum state at any time t writing

ψ(t) = U(t)ψ0 (95)

assuming that we have for ψ0 the following expression

ψ0 =
(

ctrue

cfalse

)
(96)

having adopted for the true and false states (or yes-not states, +1 and −1 corresponding
eigenvalues of such states) the following matrix expressions

ϕtrue =
(

1
0

)
and ϕfalse =

(
0
1

)
(97)

Finally, one obtains the expression of the state ψ(t) at any time

ψ(t) =
[
ctrue

[
cos

k

2
t + i

k
sen

k

2
t (a3 + b3)

]
+ cfalse

[
1

k
sen

k

2
t[(a2 + b2) + i(a1 + b1)]

]]
ϕtrue

+
[
ctrue

[
1

k
sen

k

2
t[i(a1 + b1) − (a2 + b2)]

]

+ cfalse

[
cos

k

2
t − i

k
sen

k

2
t (a3 + b3)

]]
ϕfalse (98)

As consequence, the two probabilities P true(t) and P false(t), will be given at any time t by
the following expressions

Ptrue(t) = (A2 + B2) cos2 k

2
t + 1

k2
sen2 k

2
t (P 2 + Q2) + senkt

k
(AP + BQ) (99)

and

Pfalse(t) = (C2 + D2) cos2 k

2
t + 1

k2
sen2 k

2
t (S2 + R2) + senkt

k
(RC + DS)

where

A = Re ctrue, B = Im ctrue, C = Re cfalse, D = Im cfalse,

P = −D(a1 + b1) + C(a2 + b2) − B(a3 + b3),

Q = C(a1 + b1) + D(a2 + b2) + A(a3 + b3), (100)

R = −B(a1 + b1) − A(a2 + b2) + D(a3 + b3),

S = A(a1 + b1) − B(a2 + b2) − C(a3 + b3)

Until here we have developed only standard quantum mechanics. The reason to have de-
veloped here such formalism has been to evidence that at each step it has its corresponding
counterpart in Clifford algebraic framework A(Si), and thus we may apply to it the two the-
orems developed in the previous section and the previously introduced criterium, passing
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from the algebra Si to Ni,±1. In fact, to this purpose, it is sufficient to multiply (94) by (96)
to obtain the final forms of ctrue(t) and cfalse(t).

In the final state we have that

ψt =
(

ctrue(t)

cfalse(t)

)
(101)

We may now write the density matrix that will result to have the same structure of the
previously case given in (54) but obviously with explicit evidence of time dependence. In
the Clifford algebraic framework it will pertain still to the Clifford algebra A(Si). In order to
describe the wave-function collapse we have to repeat the same procedure that we developed
previously from (54) to (64), considering that, in accord to our criterium, we have to pass
from the algebra A(Si) to Ni,±1, and obtaining

ρ → ρM = |ctrue(t)|2 (102)

in the case Ni,+1 and

ρ → ρM = |cfalse(t)|2 (103)

in the case Ni,−1, as required in the collapse.
Let us examine now the fourth application of our criterium.
Until here we considered only examples of two state quantum systems. Let us expand

our formulation at any order n. First consider Clifford Si algebra at order n = 4 (for details
see Ref. [22]). One has

E0i = I 1 ⊗ ei; Ei0 = ei ⊗ I 2 (104)

The notation ⊗ denotes direct product of matrices, and I i is the ith 2 × 2 unit matrix. Thus,
in the case of n = 4 we have two distinct sets of Clifford basic unities, E0i and Ei0, with

E2
0i = 1; E2

i0 = 1, i = 1,2,3;
(105)

E0iE0j = iE0k; Ei0Ej0 = iEk0, j = 1,2,3; i 
= j

and

Ei0E0j = E0jEi0 (106)

with (i, j, k) cyclic permutation of (1,2,3).
Let us examine now the following result

(I 1 ⊗ ei)(ej ⊗ I 2) = E0iEj0 = Eji (107)

It is obtained according to our basic rule on cyclic permutation required for Clifford basic
unities. We have that E0iEj0 = Eji with i = 1,2,3 and j = 1,2,3, with E2

j i = 1,EijEkm 
=
EkmEij , and EijEkm = Epq where p results from the cyclic permutation (i, k,p) of (1,2,3)

and q results from the cyclic permutation (j,m,q) of (1,2,3).
In the case n = 4 we have two distinct basic set of unities E0i ,Ei0 and, in addition, basic

sets of unities (Eij ,Eip,E0m) with (j,p,m) basic permutation of (1,2,3).
This is the Clifford algebra A at order n = 4.
In the other more general cases we have E00i , E0i0, and Ei00, i = 1,2,3 and

E00i = I 1 ⊗ I 1 ⊗ ei; E0i0 = I 2 ⊗ ei ⊗ I 2; Ei00 = ei ⊗ I 3 ⊗ I 3
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and

(I 1 ⊗ I 1 ⊗ ei) · (I 2 ⊗ ei ⊗ I 2) · (ei ⊗ I 3 ⊗ I 3) = ei ⊗ ei ⊗ ei

= E00iE0i0Ei00 = Eiii (108)

Still we will have that

E00iE0i0 = E0i0Ei00; E00iEi00 = Ei00E00i; E0i0Ei00 = Ei00E0i0 (109)

Generally speaking, fixed the order n of the Si Clifford algebra in consideration, we will
have that

�1 = �n

�2m = �n−m ⊗ e
(n−m+1)

2 ⊗ I (n−m+2) ⊗ · · · ⊗ I n

(110)
�2m+1 = �n−m ⊗ e

(n−m+1)

3 ⊗ I (n−m+2) ⊗ · · · ⊗ I n

�2n = e2 ⊗ I (2) ⊗ · · · ⊗ I n

with

�n = e
(1)

1 ⊗ e
(2)

1 ⊗ · · · ⊗ e
(n)

1 = (e1 ⊗ I (1) ⊗ · · · ⊗ I n) · (· · ·) · (I (1) ⊗ I (2) · · · ⊗ I (n) ⊗ e1);
m = 1, . . . , n − 1

according to the n-possible dispositions of e1 and I 1, I 2, . . . , I n in the distinct direct prod-
ucts.

We may now give the explicit expressions of E0i , Ei0, and Eij at the order n = 4.

E01 =

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ ; E02 =

⎛

⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 −i

0 0 i 0

⎞

⎟⎟⎠ ;

E03 =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎟⎠ ; E10 =

⎛

⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟⎟⎠ ;

E20 =

⎛

⎜⎜⎝

0 0 −i 0
0 0 0 −i

i 0 0 0
0 i 0 0

⎞

⎟⎟⎠ ; E30 =

⎛

⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎟⎠ ;

E11 =

⎛

⎜⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞

⎟⎟⎠ ; E22 =

⎛

⎜⎜⎝

0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0

⎞

⎟⎟⎠ ;

(111)

E33 =

⎛

⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞

⎟⎟⎠ ; E12 =

⎛

⎜⎜⎝

0 0 0 −i

0 0 i 0
0 −i 0 0
i 0 0 0

⎞

⎟⎟⎠ ;



Int J Theor Phys (2010) 49: 587–614 607

E13 =

⎛

⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞

⎟⎟⎠ ; E21 =

⎛

⎜⎜⎝

0 0 0 −i

0 0 −i 0
0 i 0 0
i 0 0 0

⎞

⎟⎟⎠ ;

E31 =

⎛

⎜⎜⎝

0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞

⎟⎟⎠ ; E23 =

⎛

⎜⎜⎝

0 0 −i 0
0 0 0 i

i 0 0 0
0 −i 0 0

⎞

⎟⎟⎠ ;

E32 =

⎛

⎜⎜⎝

0 −i 0 0
i 0 0 0
0 0 0 i

0 0 −i 0

⎞

⎟⎟⎠ .

Note the following basic feature: we have now some different sets of Clifford algebras A(Si).
In detail, we have the following sets of basic Si Clifford algebras:

(E01,E12,E13), (E01,E22,E23), (E01,E32,E33),

(E02,E11,E13), (E02,E21,E23), (E02,E31,E33),

(E03,E11,E12), (E03,E21,E22), (E03,E31,E32),
(112)

(E10,E23,E33), (E10,E22,E32), (E10,E21,E31),

(E20,E13,E33), (E20,E12,E32), (E20,E11,E31),

(E30,E13,E23), (E30,E12,E22), (E30,E11,E21)

All these are the sets of Clifford algebras A(Si) that we have at order n = 4. To each of these
sets we may apply Theorems 1 and 2 previously shown and we may apply the criterium of
the passage from the Si to the N1,±1 that we have just used in the other previous cases of
application.

Fixed such algebraic features, we may now consider the problem that we formulated in
the introduction of the present paper. It is that, in order to avoid possible contradictions, we
should still modify the previous expression for the wave-function collapse, by introducing
the states of a given measurement apparatus system A obtaining in this case

ρ = ρS ⊗ ρA =
∑

i

∑

j

cic
∗
j |ϕi〉〈ϕj | ⊗ ρA → ρS,A,t =

∑

k

|ck|2|ϕk〉〈ϕk|t ⊗ ρA(k),t (113)

See the previous discussion that we introduced by (8).
We may refer the algebraic sets E0i to the quantum system S to be measured, and consider

the algebraic sets Ei0 to the measuring apparatus A. Still we have the basic algebraic set Eij

that relates the coupling of S with A. Let us write the density matrix ρ at such order n = 4.
To simplify, we may write it in the following general form

ρ =

⎛

⎜⎜⎝

a b1 + ib2 c1 + ic2 d1 + id2

b1 − ib2 e f1 + if2 q1 + iq2

c1 − ic2 f1 − if2 h t1 + it2
d1 − id2 q1 − iq2 t1 − it2 s

⎞

⎟⎟⎠ (114)
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Obviously, the correspondence between Clifford algebra and quantum mechanics still holds
also at the present order. The ρ of (114) is still a member of the Clifford algebra A(Si) that
in fact, on the basis of (111) may be written in the following manner

ρ = a

(
E00 + E03 + E30 + E33

4

)
+ e

(
E00 + E30 − E03 − E33

4

)

+ h

(
E00 + E03 − E30 − E33

4

)
+ s

(
E00 − E03 − E30 + E33

4

)

+
[
b1

(
E01 + E31

2

)
− b2

(
E02 + E32

2

)]
+

[
c1

(
E10 + E13

2

)
− c2

(
E23 + E20

2

)]

+
[
d1

(
E11 − E22

2

)
− d2

(
E12 + E21

2

)]
+

[
f 1

(
E11 + E22

2

)
+ f2

(
E12 − E21

2

)]

+
[
q1

(
E10 − E13

2

)
+ q2

(
E23 − E20

2

)]
+

[
t1

(
E01 − E31

2

)
+ t2

(
E32 − E02

2

)]

(115)

It is in A(Si). Applying the previous criterium we must now pass from A(Si) to Ni,±1. Let us
start considering for E33 the numerical value +1 and this is to say that or E03 = E30 = +1
or E03 = E30 = −1.

On the basis of such condition of the measuring instrument, by inspection of (115) it is
seen that the terms by e and h go to zero. It remains the term by a for E03 = E30 = +1
and the term in s for E03 = E30 = −1. All the other terms containing, bi , ci , di , fi , qi , ti
(i = 1,2) go to zero and the wave function collapse has happened.

Let us explain as example as the term

E02 + E32

2
(116)

pertaining to b2, goes to zero.
Remember that we have attributed to E33 the value +1. By inspection of (112), one sees

that the basic algebraic A(Si) set in which E33 enters is (E01,E32,E33). Passing from the
algebra A to the algebra Ni,+1 (in fact we have attributed to E33 the numerical value +1) we
obtain the new commutation rule that

E01E32 = i (117)

On the other hand, considering the basic algebraic A(Si) set (E01,E02,E03) of (112) with
attribution to E03 the numerical value −1, we have the new commutation rule that

E01E02 = −i (118)

In conclusion we have that

E32 = E01i (119)

and

E02 + E32

2
= E02 + E01i

2
= −E01i + E01i

2
= 0 (120)
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Following the same procedure, one obtains that also the other interference terms are erased
and in conclusion, passing from the algebra A(Si) to the Ni,±1, one obtains a substantial
equivalence with von Neumann projection postulate. On the other hand the density matrix ρ,
given in (115), has been reduced to be

ρ = a

(
E00 + E03 + E30 + E33

4

)
+ s

(
E00 − E03 − E30 + E33

4

)

where in the new application of the Ni,±1 algebra, we may have or

E03 = E30 = +1 (E33 = +1)

and thus

ρ → ρM = a (121)

or

E03 = E30 = −1 (E33 = +1)

and thus

ρ → ρM = s (122)

and the collapse has happened.

6 Conclusion

In Sect. 3, following Y. Ilamed and N. Salingaros [18], we have given proof of Theorems 1
and 2 on two existing Clifford algebras, the Si and the Ni . Such two algebras are of course
well known in Clifford algebraic framework [18], the first holding with isomorphism with
Pauli matrices, the second representing the well known dihedral Clifford algebra Ni . We
also gave previously a very preliminary proof of such theorems by exposition at the confer-
ence on Reconsideration of Quantum mechanics Foundations in Vaxjio—Sweden [23]. The
substance of the results that we obtain in the present paper is that we may pass from the
algebra Si to Ni,±1 attributing to one of the abstract elements (e1, e2, e3) a direct numerical
value (as example, consider e3 attributing to it the value +1 and thus passing from Si to
Ni,+1 or attributing to e3 the value −1 and thus passing from the algebra Si to Ni,−1). The
algebra Si has its commutation rules based on the abstract elements (e1, e2, e3), the alge-
bra Ni,+1 has its three abstract elements (e1, e2; i) and its basic commutation rules while
the algebra Ni,−1 has its three abstract elements (e1, e2; i) and its basic commutation rules.
We foresee the possibility of a profound implication for the quantum measurement prob-
lem based on existence of such two Clifford algebras Si and Ni,±1, and, in particular, on
the basic feature that has been shown in Sect. 3, that Ni,±1, may be obtained from Si by
direct attribution, as example to e3, of a direct numerical value (+1 or −1). The reason is
that when, given a quantum system S, we arrive to attribute to S a definite numerical value
for some selected quantum observable, say e3, actually this happens because we measure S

with a proper measuring apparatus “reading” the numerical value +1 or −1, respectively.
This reason has motivated us to introduce a criterium. A quantum system without direct
observation and actualization, induced from a proper measuring apparatus, has its Clifford
algebraic counterpart in the Clifford algebraic structure Si while the collapse, happening on
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the considered system during the proper actualization by an instrument apparatus, may be
described passing from the algebra Si to Ni,±1.

We have given three cases of application of such criterium showing in detail that it holds.
On the other hand, there are still other basic considerations that in some manner legitimate
the choice of such criterium. In Sect. 3, in (65)–(77) we have re-obtained, as expected, the
results of von Neumann projection postulate in quantum measurement. It is important to
observe that we have re-obtained von Neumann projection postulate using only the Si alge-
bra. Therefore, we have given a justification of von Neumann projection postulate showing
that it is articulated only in the Si Clifford algebra. On the other hand, by using only the
Si Clifford algebra one shows (see Appendix A) that one may obtain a rough scheme of
quantum mechanics as shown in detail elsewhere [24, 25]. Finally, in order to confirm still
that, passing from Si to Ni,±1, we have a description of quantum wave function collapse, we
may also add two final considerations.

The first is that remaining in a geometric interpretation of Clifford algebra one has that

1s 1v D = 1

1s 2v 1b D = 2

1s 3v 3b 1t D = 3

where s means scalar, v means vector, b means bivector, t means trivector. To describe stan-
dard Si one needs D = 3 that is 1 scalar, 3 vectors, 3 bivectors and 1 trivectors that is the
imaginary unity i of complex numbers. This is a classical two state quantum system with
quantum dimension d = 2, Hilbert space. When we pas to Ni,±1, we have

1s 2v 1b D = 2

one needs 1 scalar, 2 vectors, 1 bivector. The dimension has been decreased to D = 2. In
correspondence the dimension d of the quantum system has become d = 1, Hilbert space.
The system has collapsed.

The second consideration is based on the following reasoning. In the Si, Cl(3) Clifford
algebra, we have two elements

ε± = 1

2
(1 ± e3) (123)

that are idempotent, better they are primitive idempotents, as we outlined in (26). The sets
Cl(3)ε± and ε±Cl(3) are left and right ideals in Cl(3) in Si. They are vector spaces of
complex dimension 2 and the identification of i with complex imaginary unity makes each
of them identical to C2. A spinor is precisely an element of a two dimensional representation
space for the group SL(2;C), which is C2.

Let us first consider Cl(3)ε+. If we chose an arbitrary frame:

(
1
0

)
= ε+ and e1ε+ =

(
0
1

)
(124)

we may decompose any arbitrary element, that is to say

∀ϕ ∈ Cl(3)ε+, ϕ =
(

ϕ1

ϕ2

)
∈ C2 (125)

A similar procedure applies to ε+Cl(3), choosing the basis (1 0) = ε+ and (0 1) = ε+e1.
We may also look at Refs. [26, 27] for further details.
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This is in Si. Now, if we calculate

e1ε+ = e1

(
1 + e3

2

)
= e1 − ie2

2
(126)

that holds in Si, it gives

e1ε+ =
(

0
1

)
(127)

When instead we pass to N1,+1, since we have in N1,+1 that i = e1e2, we obtain that

e1ε+ = e1

(
1 + e3

2

)
= e1 − ie2

2
= 0 (128)

that is to say

e1ε+ =
(

0
1

)
≡ 0 (129)

The collapse has happened.

Appendix A

We may now derive a rough scheme of quantum mechanics using the Si Clifford algebraic
framework [24, 25, 28].

Consider in Si the three abstract basic elements, ei , with i = 1,2,3 that, as we know, are
submitted to the following basic postulate:

e2
1 = 1, e2

2 = 1, e2
3 = 1 (A.1)

If we consider the ei (i = 1,2,3) as abstract quantum entities, we may conclude that
they have an intrinsic randomness that is their essential irreducible nature. This of course
happens also for quantum events. In the algebra A(Si) the ei (i = 1,2,3) have the intrinsic
potentiality that we may attribute them or the numerical value +1 or the numerical value −1.

A generic member of our algebra A(Si) is given by

x =
4∑

i=0

xiei (A.2)

with xi pertaining to some field � or C. Since the ei are abstract quantum entities, having
the potentiality that we may attribute them the numerical values, or ±1, and they have an
intrinsic and irreducible randomness, we may admit to be p1(+1) the probability that e1

assumes the value (+1) and p1(−1) the probability that it assumes the value −1, so that we
have its mean value that is given by

〈e1〉 = (+1)p1(+1) + (−1)p1(−1) (A.3)

Considering the same corresponding notation for the two remaining basic elements, we may
introduce the following mean values:

〈e2〉 = (+1)p2(+1) + (−1)p2(−1),
(A.4)〈e3〉 = (+1)p3(+1) + (−1)p3(−1)
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We have

−1 ≤ 〈ei〉 ≤ +1, i = (1,2,3) (A.5)

Selected the following generic element of the algebra A(Si):

x =
3∑

i=1

xiei, xi ∈ � (A.6)

Note that

x2 = x2
1 + x2

2 + x2
3 (A.7)

Its mean value results to be

〈x〉 = x1〈e1〉 + x2〈e2〉 + x3〈e3〉 (A.8)

Let us call

a = (
x2

1 + x2
2 + x2

3

)1/2
(A.9)

so that we may attribute to x the value +a or −a

We have that

−a ≤ x1〈e1〉 + x2〈e2〉 + x3〈e3〉 ≤ a (A.10)

Equation (A.8) must hold for any real number xi , and, in particular, for

xi = 〈ei〉
so that we have that

x2
1 + x2

2 + x2
3 ≤ a

that is to say

a2 ≤ a → a ≤ 1

so that we have the fundamental relation

〈e1〉2 + 〈e2〉2 + 〈e3〉2 ≤ 1 (A.11)

This is the basic relation we are writing in our Clifford algebraic quantum like scheme of
quantum theory. Let us observe some important things:

(a) First of all it links the Clifford algebra A(Si) with the N1,±1. In absence of measurement,
that is to say in absence of direct observation of one quantum entity ei (A.11) holds.

(b) If we attribute instead a definite numerical value to one of the three quantum entities, as
example we attribute to e3 the numerical value +1, we have 〈e3〉 = 1, (A.11) operates
now in the Ni,+1 algebra, reduced to

〈e1〉2 + 〈e2〉2 = 0, 〈e1〉 = 〈e2〉 = 0, (A.12)

and we have complete, irreducible, indetermination for e1 and for e2. This is an excel-
lent example of the profound link existing between quantum phenomenology with and
without direct observation expressed in a pure algebraic framework.
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(c) Finally, (A.11) affirms that we never can attribute simultaneously definite numerical
values to two basic non commutative elements ei .

Still let us examine another important consequence of our rough quantum mechanical
scheme. As previously evidenced, in Clifford algebra A we have idempotents. Let us con-
sider again two of such idempotents:

ψ1 = 1 + e3

2
and ψ2 = 1 − e3

2
(A.13)

Let us consider the mean values of (A.13). We have that

2〈ψ1〉 = 1 + 〈e3〉 and 2〈ψ2〉 = 1 − 〈e3〉 (A.14)

Using the last equation in (A.4) we obtain that

p3(+1) = 1 + 〈e3〉
2

and p3(−1) = 1 − 〈e3〉
2

(A.15)

Therefore, we have that

p3(+1) = 〈ψ1〉 and p3(−1) = 〈ψ2〉 (A.16)

This is to say that probabilities p3,+1,−1 are the mean values of the idempotents. The same
result holds obviously when considering the basic elements e1 or e2. Considering that in
quantum mechanics (Born probability rule), given wave functions ϕ+,−, we have

|ϕ+,−|2 = p+,− (A.17)

we conclude that

ϕ3(+) = √〈ψ1〉eiϑ1 and ϕ3(−) = √〈ψ2〉eiϑ2 (A.18)

and we have given proof that our rough scheme of quantum mechanics foresees the existence
of wave functions as exactly traditional quantum mechanics makes.

Acknowledgement I am deeply indebted with Prof. Jaime Keller for having patiently red the manuscript
and examined it for the section regarding the Clifford algebra.
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